Magnets

Magnets

Most materials are not magnetic. A magnetic material can be magnetised or attracted to a magnet.

Iron, cobalt and nickel are magnetic elements. Steel is an alloy that contains a high percentage of iron so is also magnetic.

Magnets apply forces. Magnetism is an example of a non-contact force

A bar magnet is a permanent magnet. This means that its magnetism is there all the

time and it cannot be turned on or off.

A bar magnet has two magnetic poles:

- · North pole
- · South pole

Opposite poles attract, like poles repel

Magnetic fields

A magnet creates a magnetic field around it. A force is exerted on a magnetic material brought into contact with a magnetic field

The magnetic field is strongest at the poles

We can show this field by drawing field diagrams:

- · Each field has an arrow head
- · The field lines come out of the north pole and go into the south pole
- · The field lines are most concentrated at the poles
- · Lines never cross each other

A current flowing through a wire causes a magnetic field. This effect can be used to make an electromagnet

A simple electromagnet comprises a length of wire turned into a coil and connected to a battery or power supply.

You can make an electromagnet stronger by:

- Wrapping the coil around \ piece of iron
- · Adding more turns to the coil
- · Increasing the current through the coil

Plotting a magnetic field around a bar magnet

Using a plotting compass:

- 1. Place the plotting compass near the magnet on a piece of paper
- 2. Mark the direction the compass needle points. The needle of a plotting compass always points to the south pole of a magnet.
- 3. Move the plotting compass to many different positions in the magnetic field, marking the needle direction each time
- 4. Join the points to show the field line.

